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Generation of myeloid-derived suppressor cells
using prostaglandin E2
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Abstract

Myeloid-derived suppressor cells (MDSCs) are natural immunosuppressive cells and endogenous inhibitors of the
immune system. We describe a simple and clinically compatible method of generating large numbers of MDSCs
using the cultures of peripheral blood-isolated monocytes supplemented with prostaglandin E2 (PGE2). We
observed that PGE2 induces endogenous cyclooxygenase (COX)2 expression in cultured monocytes, blocking their
differentiation into CD1a+ dendritic cells (DCs) and inducing the expression of indoleamine 2,3-dioxygenase 1,
IL-4Rα, nitric oxide synthase 2 and IL-10 - typical MDSC-associated suppressive factors. The establishment of a
positive feedback loop between PGE2 and COX2, the key regulator of PGE2 synthesis, is both necessary and
sufficient to promote the development of CD1a+ DCs to CD14+CD33+CD34+ monocytic MDSCs in granulocyte
macrophage colony stimulating factor/IL-4-supplemented monocyte cultures, their stability, production of multiple
immunosuppressive mediators and cytotoxic T lymphocyte-suppressive function. In addition to PGE2, selective
E-prostanoid receptor (EP)2- and EP4-agonists, but not EP3/1 agonists, also induce the MDSCs development,
suggesting that other activators of the EP2/4- and EP2/4-driven signaling pathway (adenylate cyclase/cAMP/PKA/
CREB) may be used to promote the development of suppressive cells. Our observations provide a simple method
for generating large numbers of MDSCs for the immunotherapy of autoimmune diseases, chronic inflammatory
disorders and transplant rejection.
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Biology of myeloid-derived suppressor cells
Dendritic cells (DCs) are key initiators and regulators of
immune responses [1-3]. Therapeutic programming of
DCs to suppress their function has been shown beneficial
in autoimmunity and transplantation [4-6]. In contrast to
DCs, suppressive macrophages [7] and myeloid-derived
suppressor cells (MDSCs), originally shown to accumulate
at the site of tumors, suppress the ability of CD8+ T cells
to mediate effective responses against cancer cells, but can
be beneficial in controlling autoimmune phenomena or
transplant rejection [8-10].
MDSCs [10], important mediators of tumor-induced

immune dysfunction and cancer progression [11], repre-
sent a heterogeneous population of immature myeloid
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cells (iMCs) involving precursors of macrophages, granu-
locytes, and DCs. MDSCs express CD34, common mye-
loid marker CD33, macrophage/DCs marker CD11b, and
IL4Rα (CD124), but lack expression of the lineage (Lin)
markers of DCs and other mature myeloid cells [10,12].
Human MDSCs are defined as CD33+Lin-HLA-DR-/low

cells. Recent studies demonstrate that monocytic MDSCs
from patients with melanoma [13], prostate cancer [14],
gastrointestinal malignancies [15], hepatocellular carcinoma
[16,17] and glioblastoma [18] show a CD14+CD11b+HLA-
DRlow phenotype while neutrophil-related immature (i)
MDSCs present in peripheral blood show CD15 expression
[10].
MDSCs express high levels of immunosuppressive fac-

tors, such as indoleamine 2,3-dioxygenase (IDO) [19,20],
IL-10 [12], arginase [21,22], inducible nitric oxide synthase
(iNOS, NOS2) [22], nitric oxide, and reactive oxygen
species [23] and use these molecules to suppress T-cell
responses [24,25]. Their induction of natural killer cell
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anergy and reduced cytotoxicity is arginase-independent
[16] but depends on transforming growth factor β1 [26].
PD-L1/B7-H1, induced on MDSCs [27,28], suppresses
antigen-specific immunity via interaction with regulatory
T cells (Treg) [27], enhanced T cell IL-10 expression and
reduced IFN-γ production [28].
The presence of prostaglandin E2 (PGE2) at early stages

of DC development was shown to suppresses the dif-
ferentiation of human monocytes into functional T helper
(Th)1-inducing CD1a+ DCs [29]. Additionally, PGE2 is
needed for the development of tumor-associated suppres-
sive macrophages [30-32]. Our two recent reports [33,34]
demonstrate that PGE2 is both required and sufficient to
redirect the differentiation of human dendritic cells into
monocytic MDSCs. It also mediates the induction of
MDSC-associated suppressive factors in human MDSCs
[21] in a mechanism involving the establishment of a posi-
tive feedback loop between PGE2 and cyclooxygenase
(COX)-2 [33], the key regulator of PGE2 production [35].
Additionally, PGE2 has been shown to enhance the num-
bers of MDSCs in mouse models and induce their expan-
sion ex vivo [36-38].

In vitro generation of myeloid-derived suppressor
cells
Recent work in mice demonstrated that functional MDSCs
can be generated in vitro from mouse embryonic stem cells
and bone marrow hematopoietic stem cells, resulting in
two subpopulations - CD115+Ly-6C+ (equivalent to the
monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-
bearing mice) and CD115+Ly-6C- cells (resembling the
granulocyte/macrophage progenitors) [37,39-41]. Adoptive
transfer of these MDSCs prevented graft-versus-host dis-
ease mediated by alloreactive T cells. While granulocytic
MDSCs may induce non-specific immune suppression and
suppress the effector phase of the allogeneic immune re-
sponse at an early stage, the monocytic MDSCs emerge as
the key subset needed to promote Treg development and to
establish long-term antigen-specific tolerance [37,39-41].
Another source of MDSCs is the bone marrow, which har-
bors a large reservoir of MDSCs. Recent studies have
demonstrated an efficient growth factor/cytokine (granulo-
cyte macrophage colony stimulating factor (GM-CSF) +G-
CSF or GM-CSF+ IL-6 or IL-13)-induced expansion of
MDSCs populations in vitro, utilizing bone marrow cells
from either mice or human sources [42,43] to generate
IL4Rα+ MDSCs. In mice these cells were able to impair the
priming of CD8+ T cells, and enabled long-term accept-
ance of pancreatic islet allografts [43]. Furthermore, bone
marrow progenitor cells can be induced by lipopolysac-
charide to develop into CD11b+Gr1intF4/80+ cells that,
when adoptively transferred, suppressed allergen-induced
airway inflammation in recipient mice [44]. Due to the
massive accumulation of MDSCs in the spleens of tumor-
bearing mice, the spleen is considered to be a reservoir of
MDSCs and their precursors [45]. The drawback of these
reported initiatives to develop MDSC-based therapeutic
strategies is the lack of a reliable source of MDSCs.
For human treatment regimens the control of MDSCs

in vitro by manipulating recipient myelomonocytic pre-
cursor cells appears most applicable. While there are low
frequency and total numbers of MDSCs in peripheral
blood (approximately 5% of cells in healthy subjects),
peripheral blood constitutes a very convenient source of
myelomonocytic precursor cells for MDSC generation.
Apart from the recently described cytokine regimens that
showed the feasibility of in vitro expansion of blood-
isolated MDSCs populations [46] the induction of human
MDSCs has been proven a feasible in vitro approach for
the generation of CD14+HLADRneg/low MDSCs by dif-
ferentiation of isolated CD14+ cells in the presence of
IL-4 +GM-CSF and tumor-derived microvesicles [46]. Al-
ternatively, functional MDSCs can be induced in peripheral
blood mononuclear cell (PBMC) cultures supplemented
with several cytokine induction combinations, produced by
tumor cell lines [47].
Our current data provides evidence for the feasibility of

generating large numbers of monocytic MDSCs for the im-
munotherapy of autoimmune and inflammatory diseases,
or transplant rejection by using a single common deter-
mining factor - PGE2, a common inflammation-associated
master regulator of immune responses - that can redirect
the development of CD1a+ DCs to CD14+CD33+CD34+

monocytic MDSCs [48].

Efficient generation of human myeloid-derived
suppressor cells using prostaglandin E2
The development of functional MDSCs requires the inhib-
ition of development of immunostimulatory antigen pre-
senting cells and concomitant induction of suppressive
functions [8]. The expansion of iMCs can be induced by
factors such as GM-CSF, IL-6, or vascular endothelial
growth factor [24,49-51]. The upregulation of MDSC-
associated immunosuppressive factors and establishment
of their immunosuppressive function can be induced by
such factors as IL-1β, IFNγ, PGE2, or Toll-like receptor
ligands [8]. While the above MDSC-activating factors have
apparently diverse character and functions, they all share
the ability to induce COX2 expression and PGE2 produc-
tion [52-54], suggesting the key role of COX2 and PGE2
in MDSCs development.
Peripheral blood-derived monocytes provide a conveni-

ent source of cells for cellular therapy due to their relative
abundance in the circulation. We used peripheral blood
PBMCs, obtained from the blood of healthy donors
(Central Blood Bank of Pittsburgh, PA) using lymphocyte
separation medium, to isolate monocytes by positive mag-
netic selection using the CD14+ isolation kit (EasySep



Figure 1 Prostaglandin E2-induced positive cyclooxygenase 2-prostaglandin E2-E-prostanoid receptor 2/4 feedback loop allows for
ex vivo generation of high numbers of myeloid-derived suppressor cells and their functional stability. (A) Prostaglandin E2 (PGE2)
(via E-prostanoid receptor (EP)2- and EP4-dependent signals) drives the early induction of cyclooxygenase (COX)2 in local myeloid cells
(monocytes, macrophages, immature dendritic cells (iDCs)), promoting their production of suppressive factors (indoleamine 2,3-dioxygenase (IDO)
1, IL-10, arginase 1, nitric oxide synthase (NOS)2, and PGE2 itself (current data and [48]), and acquisition of suppressive functions [48]. These
processes are further amplified by the de novo production of endogenous PGE2, now produced at high levels by myeloid-derived suppressor cells
(MDSCs) themselves, thereby creating a positive feedback loop leading to persistence of MDSCs. The key role of the EP2- and EP4-mediated
COX2-PGE2 feedback to control multiple aspects of MDSCs function provides convenient targets to generate MDSC-associated immune
regulation in tolerogenic therapies. (B) PGE2 induces high numbers of MDSCs (48.6%), with yields similar to iDCs (40.2%) and TNF-α matured DCs
(36.9%). Percentages indicate the yields of the cells generated in day 6 monocyte cultures performed in the presence of granulocyte macrophage
colony stimulating factor (GM-CSF) and IL-4 in the absence of PGE2 (iDC, CD1a

+ DCSIGN+CD14-CD80-CD83-) or presence of PGE2 (MDSCs, CD1a-

DCSIGN-CD14+CD33+CD34+CD80-CD83-) and after additional 48 h maturation of iDC with TNF-αmDC, (CD1a+ DCSIGN+CD14-CD80+CD83+). Bars
present data (mean± s.d.) from 12 different experiments with different donors. (C) Dose-dependent induction of immunosuppressive factors IL10,
IDO1, IL4Rα and COX2 in PGE2-induced MDSCs, generated in the presence or absence of IL-4 (relative mRNA levels normalized for hypoxanthine
phosphoribosyltransferase 1 and expressed as fold increase (2-ΔCT), where ΔCT=CT (Target gene) - CT (HPRT1)). Bars present data (mean± s.d) of a
single representative experiment with different donors. *P <0.05, **P <0.01, ***P <0.001, statistically significant differences relative to medium alone.
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Isolation kit; Stem Cell Tech, Vancouver, Canada). Mono-
cytes were cultured for 6 days in 12 or 24-well plates at
5 × 105 cells per well in rhuGM-CSF and IL-4 (both 1000
U/ml; gifts from Schering Plough, Kenilworth, NJ), with
10-6 M PGE2 (PGE2-induced MDSCs, Sigma, St Louis,
MO, USA) (Figure 1A). Alternatively, the E-prostanoid re-
ceptor (EP)2 agonist Butaprost (10 μM, Sigma) and the
EP4 agonist CAY10598 (10 nM, Cayman Chemical, Ann
Arbor, MI, USA) were used to generate MDSCs. EP2 and
EP4 are the two subtypes of the G protein-coupled recep-
tor, signaling of which is coupled to a rise in cAMP concen-
tration [55]. As shown in Figure 1B, the yield of
PGE2-induced MDSCs (CD1a-DCSIGN-CD14+CD33+

CD34+CD80-CD83-) was similar to the yield of iDCs
(CD1a+DCSIGN+CD14-CD80-CD83-) and TNF-α-matured
(rhuTNFα, 50 ng/ml, Strathmann Biotech, Germany) DCs
(CD1a+ DCSIGN+CD14-CD80+CD83+).
The differentiation of monocytes into functional CD1a+

DCs could be redirected into CD1a-CD14+CD80-CD83-

MDSCs by their exposure to PGE2 only at early stages of
DC development (that is, from day 0, PGE2

d0) [29] but not at
later time points (that is, at day 6, PGE2-conditioned DCsd6).
While the immunosuppressive phenotype of the PGE2-

induced MDSCs proved to be PGE2 concentration-
dependent (Figure 1C) [29], it was independent of the
presence of IL-4, indicating a key role for PGE2, but not
for IL-4, in inducing MDSCs.
Exposure to PGE2 induced the expression of endogenous

COX2 in differentiating monocytes, leading to the establish-
ment of a PGE2-COX2-mediated positive feedback loop, and
the induction of IDO1, NOS2, IL-10, or IL-4Rα - the typical
MDSC-associated factors (Figure 1C). PGE2-induced cells
displayed a suppressive phenotype, marked by the expression
of inhibitory molecules - inhibitory receptor Ig-like transcript
(ILT)2, ILT3, ILT4 and programmed cell death 1 ligand 1
(previously implicated in the suppressive functions of mye-
loid cells [27,28]), produced the immunosuppressive factors
IDO1, IL10 and PGE2 and exerted suppressive functions,
blocking the proliferation and development of CD8+ T cells
into granzyme B (GrB)high cytotoxic T lymphocytes [33].
Additionally, PGE2 induced a uniform expression of

high levels of CXCR4 [34], typically present on MDSCs
from cancer-bearing individuals [56], and strong migra-
tory responsiveness to CXCL12 [34].

Therapeutic potential of ex vivo induced myeloid-
derived suppressor cells
Anti-inflammatory activity of MDSCs in a variety of
physiological settings and their therapeutic promise in
transplantation [57] suggest that these cells may provide
a novel cell-based immunotherapy in transplantation
[40,58] and autoimmune diseases [59].
While the spontaneously arising endogenous MDSCs

present in many forms of autoimmune diseases appear
to be defective and ineffective in controlling the disease
(reviewed in [60]), it was shown that adoptive transfer of
MDSCs can limit autoimmune pathology [61-63], pro-
viding a rationale for the development of methods to
expand or induce MDSCs ex vivo.
Transfer of MDSCs can prevent graft-versus-host dis-

ease [42], and prolong the survival of allo-skin [64] and
allo-kidney transplants [65], and play an essential role in
an allogeneic cardiac transplantation model [57]. Adop-
tively transferred MDSCs, isolated from synegeic tumor-
bearing mice, can prevent the onset of type 1 diabetes in
non-obese diabetic mice [63] and ameliorate the symp-
toms of inflammatory bowel disease [59]. In a mouse
model of alopecia, adoptively transferred MDSCs have
been shown to promote partial restoration of hair
growth [62].
From the therapeutic standpoint, it is important to iden-

tify central regulatory pathways that maintain the suppres-
sive functions of MDSCs mediated by different suppressive
molecules (arginase 1 [42], ILT-2 [66], heme-oxygenase
(HO-1) [64], and iNOS [65]). Our data [48,67] - showing
that the exposure of differentiating monocytes to PGE2 (and
the establishment of a positive feedback between PGE2 and
COX2) is both required and sufficient for MDSC stability
and their ability to produce all MDSC-associated sup-
pressive mediators and suppress CD8+ T cell function [48] -
provides evidence for a feasible and clinically compatible
method of generating suppressive cells for immunothera-
peutic purposes.

Conclusions
Due to their ability to suppress T cell responses in mul-
tiple diseases [65,68,69], MDSCs represent a promising
population of cells for use in tolerogenic therapies. Our
recent observations demonstrating the feasibility of
using PGE2 to promote the development of MDSCs
from monocytic precursors provide a clinically feasible
system of generating large numbers of MDSCs ex vivo,
facilitating the development of new therapies for auto-
immune diseases and transplant rejection.
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