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Abstract

Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these
mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be
exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they
may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the
interaction between MSC and macrophages, the induction of MSC-educated macrophages, how these cells position
between other immune regulatory cells, and how they may be used in the clinic.
Introduction
Mesenchymal stem cells (MSC) are stromal cells with
potent regenerative and immunomodulatory properties
[1,2]. They are found in multiple tissues, including bone
marrow and adipose tissue [3] and are relatively easy to
isolate and expand in culture. Their capacity to differen-
tiate into multiple cellular lineages and their trophic
effects on other progenitor cells has initiated interest in
the use of these cells for regenerative therapy [4-6].
However, analysis of the mechanisms involved in the
reparative effects of MSC indicates that many of these
effects may in fact relate to the immunomodulatory
properties of MSC. It has been demonstrated that MSC
ameliorate acute graft vs. host disease [7,8], reduce the
progression of kidney fibrosis by modulation of the early
inflammatory response after injury [9,10], and in experi-
mental models show promise as a therapeutic treatment
of immunological diseases including arthritis [11], hepa-
titis [12], and organ transplantation [13,14].
MSC have the capacity to modulate the immune sys-

tem via a plethora of mechanisms. They secrete anti-
inflammatory factors such as TGF-β and hepatocyte
growth factor [2], they inhibit lymphocyte proliferation
via the expression of indoleamine 2, 3-dioxygenase
(IDO) [15], and they express inhibitory co-stimulatory
molecules such as programmed death ligand 1 (PD-L1)
and TNF-related apoptosis-inducing ligand (TRAIL)
[16,17]. In addition, MSC modulate the immune system
via indirect mechanisms by inducing immune cells to
* Correspondence: elke.eggenhofer@ukr.de
1Department of Surgery, University Medical Center of Regensburg,
Franz-Josef-Strauss Allee 11, Regensburg, Germany
Full list of author information is available at the end of the article

© 2012 Eggenhofer and Hoogduijn; licensee B
the Creative Commons Attribution License (ht
distribution, and reproduction in any medium
adapt a regulatory function. MSC induce regulatory T
cells in vitro and in vivo [14,18] and affect the differenti-
ation and function of dendritic cells [19]. In recent years
it has become clear that MSC also regulate the function
of macrophages. Co-culture with MSC induces macro-
phages to adapt an enhanced regulatory phenotype via
expression of increased levels of IL-10, reduced levels of
TNF-α and IL-12, low co-stimulatory molecule CD86
and HLA class II while showing higher phagocytic activ-
ity [20,21]. This effect of MSC is at least partially
mediated by soluble mechanisms and prostaglandin E2
(PGE-2) has been indicated to be one of the factors
involved [21].
The question is whether the in vitro effects of MSC on

macrophages are operational in vivo. There is evidence
that MSC infusion leads to increased levels of regulatory
type monocytes/macrophages in the circulation [22].
This effect is accompanied by an increase in the abun-
dance of regulatory macrophages present within
inflamed tissue [22]. Furthermore, it has been shown
that locally administered MSC attract macrophages and
turn them into a regulatory phenotype [21,23]. Thus
in vivo administered MSC appear to have a similar effect
on macrophages as their in vitro counterparts. The
mechanisms involved, however, may be very different.
There is accumulating evidence that, after administration,
MSC are short-lived (Eggenhofer et al., in press). As tran-
siently present MSC may themselves be incapable of se-
creting sufficient regulatory macrophages inducing
factors, additional mechanisms may be important. Indeed,
it has been demonstrated that the phagocytosis of dead
MSC by macrophages induces them to adapt a more re-
generative and immunomodulatory function [24]. This
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indicates that administered MSC may modulate macro-
phages function through initiating phagocytosis, while
resident MSC that are around for a much longer period of
time may modulate macrophages via the secretion of
immunomodulatory factors and expression of cell surface
molecules. In this respect it is interesting that throughout
all tissues MSC are virtually ubiquitous. Tissue-resident
MSC have the full capacity to locally induce regulatory
macrophages. Studies into the influence of MSC on
macrophages behavior are therefore relevant to assess-
ments of MSC as a cell therapeutic product and also to
examine the potentially exploitable effects of tissue-
resident MSC.

Generation of MSC-educated macrophages (MSC-Mo)
In the past, research to the immunomodulatory effect of
MSC focused on the interactions of MSC with T-lym-
phocytes, B-lymphocytes, NK cells, and dendritic cells,
but recently the effect of MSC on the cells of monocytic
lineages, specifically macrophages, has attracted increas-
ing attention. It is well known that MSC can generate an
immunoregulatory type of macrophages in vivo [23].
Furthermore, it has been shown that MSC can also
induce a regulatory macrophage population in vitro
[20,21].
Recent studies have demonstrated the potential of MSC

to educate macrophages to adapt an anti-inflammatory/
immune suppressive phenotype. A number of studies
allowed direct contact between MSC and macrophages
in vitro [20,21]. However, other experiments have indi-
cated that MSC can modulate macrophages via soluble
factors in a transwell system [20].
After co-culturing with MSC, peripheral blood mono-

cytes derived macrophages (Mo) can be described as a
novel type of alternatively activated macrophages (MSC-
Mo) [20]. These MSC-Mo remain adherent to plastic
and keep a Mo morphology. However, an increased
number of Mo can be observed due to the trophic fac-
tors secreted by MSC (Figure 1A). They express higher
levels of CD206, which is known to be a marker of alter-
natively activated macrophages and found on other types
of anti-inflammatory macrophages as well [25]. Func-
tionally, MSC-Mo display higher phagocytic activity
compared to Mo. Moreover, these cells show increased
production of anti-inflammatory IL-10 and IL-6, while
their production of pro-inflammatory cytokines like IL-
12 and TNFα is decreased (Figure 1B). Typically, alter-
natively activated macrophages are known to promote
Th2 type of responses and secrete less pro-inflammatory
cytokines (P. Riquelme: The ONE Study workshop
2012). However, these macrophages retain high levels of
inflammatory cytokine production, such as TNF-α and
IL-6 [26]. Based on those findings, MSC-Mo (IL-10high,
IL-12low, IL-6high, and TNF-αlow) are defined as a
novel type of alternatively activated population of
macrophages distinct from previously reported macro-
phages [20].

Application of MSC-Mo in the clinic
To date, MSC from adipose tissue or bone-marrow are
used in several clinical trials in the treatment of a variety
of clinical conditions such as graft vs. host disease [7,8],
myocardial infarction [27], ischemic stroke [28], Crohn’s
disease [29,30], diabetes mellitus [31], and acute graft
rejection in organ transplantation [32,33]. These osten-
sibly dissimilar clinical conditions share the role of
inflammation in their pathogenesis. Macrophages play a
crucial role in not only the initiation but also the con-
tinuation of inflammatory processes. To activate macro-
phages in an alternative way by MSC may reduce
inflammation and could modulate immune responses,
which is of great therapeutic interest. Many groups and
regulatory agencies favor the use of autologous cell ther-
apy to avoid immune recognition. However, isolation,
cultivation, and expansion of MSC to a clinical relevant
dose normally can require several weeks and is not com-
patible with the treatment schedules of many conditions,
particularly in the case of organ transplantation. Gener-
ation of MSC-Mo could be achieved by collection of
monocytes through leukapheresis, followed by co-
cultivation with a universal source of third party MSCs.
Using this strategy a sufficient amount of autologous
MSC-Mo could be prepared within a few days in a sim-
ple and clinical feasible fashion.
However, (pre-)clinical proof of concept studies with

MSC-Mo have yet to be conducted and many questions
remain concerning dosage and timing especially in the
context of solid organ transplantation. Furthermore, a
broader understanding of the potential role of MSC in
situ and their influence on the generation of MSC-Mo
could lead to the development of therapy whereby MSC
are used as inducers of regulatory Mo in vivo. MSC
reside in almost all tissue and will encounter infiltrat-
ing Mo in case of inflammation (Figure 2). MSC may
thus locally affect the function of Mo and be capable
of modulating immune responses in tissues. New therap-
ies may therefore be designed that target tissue MSC
to become activated (for example, mimicking local
inflammation to create pro-inflammatory micromilieu by
injection of pro-inflammatory cytokines) in order to
stimulate infiltrating Mo to adapt a regulatory phenotype
and function.

Positioning of MSC-Mo between immune regulatory cells
MSC-Mo belong to a class of myeloid-derived suppres-
sor cells. These cells share a myeloid origin and immune
regulatory capacity, but are otherwise a heterogeneous
population of cells. They are induced from immature



Figure 1 Generation of MSC-educated macrophages (MSC-Mo). (A) Co-cultivation of MSC and resting macrophages in a transwell cell
culture system. Pores with a size of 0.4 μm allow exchange of MSC-produced soluble factors from upper chamber (MSC) to lower chamber (Mo).
(B) Schematic overview of Mo to MSC-Mo transition induced by immunomodulatory (also in the figure) and growth factors released by MSC.
Arrows next to cytokines show up- (") or down- (#) regulation in MSC-Mo.
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myeloid cells by factors that are produced during acute
or chronic tissue injury or disease [34]. One of these fac-
tors, PGE-2, induces myeloid-derived suppressor cells
from dendritic cells [35] ([36] N. Obermayer: The ONE
Study workshop 2012). Similarly, PGE-2 plays a role in
Figure 2 Role of MSC in macrophage-mediated immune regulation in
phenotype by production of immunomodulatory and growth factors. This
activated immune cells and surrounding parenchymal cells. MSC thereby b
cellular immune response by generation of Tregs.
the induction of MSC-Mo [21]. The production of PGE-
2 by MSC increases under inflammatory conditions [37],
suggesting an increased efficacy of MSC to induce regu-
latory Mo under conditions of injury. IL-10 is another
factor associated with the generation of myeloid
situ. MSC modulate resting macrophages to adapt a regulatory
effect of MSC is enhanced by pro-inflammatory cytokines, released by
lock Mo-mediated activation of parenchymal cells and decrease
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suppressor cells. It is a potent inducer of tolerogenic IL-
10 producing dendritic cells [38], but it is doubtful
whether it is involved in the induction of MSC-Mo.
There is controversy whether MSC secrete IL-10 but in
our hands levels of IL-10 secreted by MSC are neglect-
able [39]. Furthermore, IFN-γ, crucial for the formation
of regulatory Mo [40] ([41] P. Riquelme and J. Hutchin-
son: The ONE Study workshop 2012), does not seem to
be involved in the generation of MSC-Mo as MSC
hardly secrete this cytokine [39,42]. MSC do secrete,
however, a diversity of other factors of which several
may play a role in the induction of MSC-Mo.
Functionally, MSC-Mo resemble several other types of

myeloid-derived suppressor cells in some respects. Most
of these cell types secrete IL-10 while their expression of
pro-inflammatory cytokines like IL-6, TNF-α, and IL-12
is reduced. The expression profile of adhesion molecules
and the migratory properties of MSC-Mo are not yet
elucidated, however. MSC-Mo may differ considerably
from non-adherent myeloid-derived suppressor cells in
this respect ([43] C. Macedo: The ONE Study workshop
2012). In vivo, MSC-Mo are formed in tissues they have
infiltrated and where they are exposed to a cocktail of
cytokines provided by the stroma. Several types of
myeloid-derived suppressor cells that are induced by a
single or a small panel of cytokines may therefore come
together in the MSC-Mo. Better characterization of the
secretory profile of the stroma and the migration pat-
terns of macrophages after encounter with the stroma
will reveal more details on these interesting and poten-
tially clinically useful cells.

Conclusions
MSC provide macrophages with signals that stimulate
conversion to a regulatory phenotype. There are two
conceivable applications for the generation of MSC-Mo,
the first by inducing MSC-Mo through MSC therapy,
and the second by the induction of MSC-Mo by tissue-
resident MSC. Pre-clinical and clinical studies that aim
to use or target MSC in organ transplantation should
consider that MSC-Mo may have a vital role in mediat-
ing the effects of MSC.
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