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Challenges in machine perfusion preservation for
liver grafts from donation after circulatory death
Naoto Matsuno1,2* and Eiji Kobayashi3
Abstract

Donation after circulatory death (DCD) is a promising solution to the critical shortage of donor graft tissue.
Maintaining organ viability after donation until transplantation is essential for optimal graft function and survival. To
date, static cold storage is the most widely used form of preservation in clinical practice. However, ischemic
damage present in DCD grafts jeopardizes organ viability during cold storage, and whether static cold storage is
the most effective method to prevent deterioration of organ quality in the increasing numbers of organs from DCD
is unknown. Here we describe the historical background of DCD liver grafts and a new preservation method for
experimental and clinical transplantation. To prevent ischemia-reperfusion injury in DCD liver grafts, a hypothermic
machine perfusion (HMP) technique has recently been developed and may be superior to static cold preservation.
We present evidence supporting the need for improving liver perfusion performance and discuss how doing so will
benefit liver transplantation recipients.
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Introduction
Approximately 100,000 patients worldwide undergo organ
transplantation annually, but many other patients remain
on waiting lists. The shortage of donors for transplantation
is a universal problem. The waiting list has continued to
grow, and the discrepancy between supply and demand is
still increasing. The Declaration of Istanbul calls for a new
paradigm of national self-sufficiency. As mandated in the
Declaration, each country or region, guided by the ethical
principles of the World Health Organization (WHO),
should strive to provide a sufficient number of organs
for its recipients from its own population [1]. In another
strategy, the use of marginal donors is a promising way to
increase the supply of graft tissue. In particular, the use of
organs from non-heart-beating donors or donation after
circulatory death (DCD) is increasing in importance as a
potential source of vital organs for clinical transplantation.
Maintaining organ viability after donation until trans-
plantation is essential for optimal graft function and
survival. The two current approaches to preservation
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prior to transplantation are simple cold storage (SCS) and
machine perfusion (MP). SCS’s simplicity, low cost, and
need for transport make it the method of choice at the
majority of transplant centers. However, the major principle
of simple hypothermic liver preservation is the reduction
of metabolic activity. Although MP of the liver using
hypothermia may have a theoretical advantage in providing
metabolic support and oxygenation, its use has not become
widespread in clinical practice. Recently, short- and long-
term function of kidney procured from DCD by means of
normothermic recirculation was reported [2]. The principle
underlying normothermic and subnomothermic perfusion
is recreation of the physiologic environment by maintaining
normal organ temperature and providing essential substrates
for cellular metabolism, oxygenation, and nutrition.
In this review, we summarize the historical background

of liver transplantation from DCD, the subsequent develop-
ment of clinical donor criteria for DCD liver grafts, and the
progress of MP for DCD kidney and liver in cold storage
are introduced. Finally, a promising preservation method
of DCD liver transplantation is mentioned as a challenge
using a new MP system. DCD liver transplantation can be
performed for the many patients who desire the rescue
from their death.
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Historical background of liver transplantation from DCD
Since the earliest days of liver transplantation, the critical
shortage of donor liver grafts has promoted the creation
of strategies to increase the donor pool. For example, a
statement from the Institute of Medicine (IOM) and
the Health Resources and Services Administration (HRSA)
encouraged the use of grafts from high-risk donors in order
to decrease the growing waiting list [3-5]. In March 1995,
an international workshop on non-heart-beating donation
was held in Maastricht, the Netherlands, and led to the
Maastricht classification system (Table 1) for describing
DCDs [6]. Categories 1, 2, and 4 include uncontrolled
DCDs, and Category 3 includes controlled DCDs. DCDs
have come to represent the fastest growing proportion
of the donor pool. For example, in some United Network
for Organ Sharing (UNOS) regions with limited standard
criteria for donors, DCDs comprise 16% to 21% of the total
donor pool [7]. Recent data show no difference between
the long-term outcomes of transplantation of kidney grafts
from DCDs and those from donation after brain death
(DBD), although the incidence of delayed graft function
(DGF) is higher for DCD kidneys [8-10]. Following this
successful use of DCD kidney grafts for clinical transplant-
ation, interest moved toward using extrarenal organs,
including liver, pancreas, and lungs, from DCD [11]. Several
transplant programs worldwide subsequently began to
use livers from DCDs. However, early during these efforts,
liver transplantations from DCDs did not show consistently
favorable post-transplantation results. Livers from DCDs
were found to frequently demonstrate diffuse hepatocytic
necrosis, increased platelet adhesion, an absence of bile
flow, and depletion of ATP. The development of ischemic
biliary stricture was a major source of morbidity after DCD
liver transplantation. Furthermore, although the incidence
of DGF of transplanted kidneys was high, patients could
receive hemodialysis until the kidneys recover. In contrast,
DGF of early-phase liver transplants often required rescue
therapy with retransplantation, which is associated with
a significantly increased risk of patient mortality. This
situation led to early marked reservations regarding the
use of DCD liver grafts.
Since the early days of DCD liver transplantation, the

incidences of primary non-function and severe DGF
Table 1 Maastricht classification system

Category Features Alternative
categories

1 Dead upon arrival, accident and
emergency

Uncontrolled

2 Resuscitation attempted without
success, accident and emergency

Uncontrolled

3 Awaiting cardiac death, intensive care Controlled

4 Cardiac arrest while brain dead,
intensive care

Controlled
have been reduced considerably due to the use of better
selection criteria, livers from controlled DCD, and shorter
warm and cold ischemic times. Unfortunately, even this
improved strategy does not always significantly increase
the numbers of potential donors. Additional studies are
needed to identify clinical and policy strategies to reduce
the incidence and improve the outcome of primary non-
function and ischemic cholangiopathy in recipients of DCD
liver grafts. One means to this end is to improve organ
preservation methods and techniques.

Donor criteria for DCD liver transplantation
Unlike the situation with kidney transplants, the use of
livers from DCDs does not yet comprise the majority
of transplants. There are no effective mathematical al-
gorithms capable of differentiating livers on the basis
of transplantability. Several recent large-scale studies
on risk factors associated with DCD liver transplantation
are summarized in Table 2. In one study, Mateo et al.
analyzed the UNOS database of 367 liver transplants
from DCDs and 33,111 liver transplants from DBD per-
formed between 1996 and 2003 [12]. The graft survival
rates at 1 year and 3 years in the recipients of livers from
DCD donors (71% and 60%, respectively) were significantly
(P <0.001) inferior to those with grafts from DBD donors
(80% and 72%, respectively). The authors identified the
following cumulative relative risk factors for graft loss
among recipients: being on life-support, being hospitalized
or placed in an intensive care unit, receiving dialysis, having
a serum creatinine level greater than 2.0 mg/dL at the
time of transplantation, and age greater than 60 years.
However, 1-year and 3-year graft survival rates (81% and
67%, respectively) in low-risk recipients with low-risk DCD
livers (that is, donor warm ischemic time (DWIT) of less
than 30 minutes and cold ischemic time (CIT) of less than
10 hours) were not significantly different from those of
recipients with DBD livers.
In another study, Lee et al. used a multivariate Cox

model to analyze data from 874 adult DCD liver trans-
plantations performed between 1996 and 2006 [13].
Five risk factors were identified according to index scores:
medical history, life support status at transplantation,
DWIT, CIT, and donor age. Specifically, graft survival
in recipients with low-risk DCD donors (age ≤45 years;
DWIT ≤15 minutes; CIT ≤10 hours) was comparable
to that of recipients with livers from DBDs. Mathur
and coworkers analyzed data from the Scientific Registry
of Transplant Recipients (SRTR) for DCD liver recipients
who underwent transplantation between 1 September
2001 and 30 April 2009 (n = 1567) [14]. Recipient factors
significantly (P ≤0.05) predictive of graft failure included:
age 55 years or older; male; African-American; positivity
for hepatitis C virus (HCV); presence of metabolic liver
disorders; transplant Model for End-stage Liver Disease



Table 2 Risk factors associated with DCD liver transplantation

Risk factors References

Life support in ICU, dialysis, serum creatinine >2 mg/d, donor age >60 years, DWIT ≥30 minutes, CIT >10 hours, retransplantation Mateo et al. [12]

Donor age >45 years, DWIT >15 minutes, CIT >10 hours Lee et al. [13]

Donor age ≥55 years, male, African-American, HCV+, metabolic disorder, MELD ≥35, life support Muthur et al. [14]

DWIT ≥30 minutes, MELD >30, donor age >60 years, CIT ≥10 hours de Vere et al. [15]

CIT, cold ischemic time; DCD, donation after circulatory death; DWIT, donor warm ischemic time; HCV, hepatitis C virus; MELD, Model for End-stage Liver Disease.
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(MELD) score of 35 or greater; hospitalization at trans-
plantation; and the need for life support at transplantation.
Donor characteristics predictive (P ≤0.005) of graft failure
included age 50 years or older and weight greater
than 100 kg. Each additional hour of CIT was found
to be associated with a 6% increased graft failure rate
(P <0.001), and DWIT of 35 minutes or more significantly
(P = 0.002) increased the rate of graft failure. Factors
predictive (P ≤0.006) of recipient mortality included
age 55 years or older, hospitalization at transplantation,
and retransplantation. The Pittsburgh group identified
DWIT as the most indicative parameter. Specifically,
they found that DWIT exceeding 20 minutes is associated
with significantly poorer graft survival rates. Surprisingly,
CIT is not similarly associated with poor outcomes in
recipients of DCD transplants. However, DCD and DBD
grafts transplanted into patients whose MELD score
exceeded 30 or who were on organ-perfusion support
(mechanical ventilation or hemodialysis) had similar
survival rates, suggesting a potentially greater benefit
of DCD livers in critically ill patients [15]. Furthermore,
patients who had undergone liver transplantation from
DCD donors who were older than 60 years had a mark-
edly high rate (67%) of biliary complications. Factors
associated with ischemic cholangiopathy, including older
donor age, high donor weight, CIT, and DWIT, were sig-
nificant predictors of graft failure. Currently, general
criteria for using DCD livers for transplantation include
DWIT of less than 30 minutes, donor age of 60 years or
less, and CIT of no more than 8 to 10 hours (Table 2).

MP preservation of grafts (kidney and liver) during
cold storage
The introduction of kidney perfusion preservation in
clinical practice started in the late 1960s and built on
then-recent advances in continuous hypothermic isolated
perfusion using blood [16] and cryoprecipitated plasma
prior to autologous kidney transplantation. Subsequently,
dextrose, insulin, hydrocortisone, penicillin, and magnesium
sulfate were added to the plasma [17]. One of the most
noteworthy achievements followed in 1967, in which
canine kidneys were transplanted successfully after 72
hours of pulsatile hypothermic MP preservation [18].
Hypothermic machine perfusion (HMP) of human kidney
became a clinical reality soon thereafter: a patient who
received a kidney that had been preserved for 17 hours
by using this preservation circuit achieved acceptable
post-transplantation function [19]. During the 1970s,
HMP was used by transplant centers (mainly in the
United States and Europe) to preserve and transport
kidneys. In addition, several groups improved the existing
perfusion solution by adding or omitting various com-
ponents. Consequently, different perfusion machines
were developed and used clinically for kidney preservation.
For example, the equipment used during the 1970s by
Koostra and colleagues was a modified Gambro machine
[20]. In comparison, the Newcastle DCD kidney team used
similar equipment but a locally manufactured UW-like so-
lution that lacked starch [21]. However, the development of
UW solution in 1980 allowed surgeons to preserve kidneys
by SCS for much longer times (maximum 72 hours) than
had been possible previously [22]. Combined with SCS,
the UW solution provided a cost-effective alternative to
MP, and most centers abandoned the clinical use of MP
soon thereafter. Over the last few decades, the success
of kidney transplantation as the treatment of choice for
end-stage renal failure has led to an increasing shortage
of suitable organs. This shortage has forced the trans-
plantation community to reconsider the use of grafts
from otherwise high-risk donors, including aged or
hemodynamically unstable donors, and those from non-
heart-beating donation. Consequently, MP of kidneys
from these marginal donors regained worldwide inter-
est. MP preservation methods that provide an optimized
physiologic environment that enables organ evaluation,
resuscitation, and modulation before transplantation are
now the focus of research and clinical use.
The international multicenter trial for HMP in kidney

transplantation is a well-designed prospective randomized
trial of paired kidneys [23]: one was preserved by using
HMP and the other by using SCS. The study examined 672
renal transplantations performed in Europe. HMP signifi-
cantly reduced the duration of DGF and improved the rate
at which the serum creatinine level decreased. In addition,
the risk of DGF was significantly reduced by HMP com-
pared with cold storage (26.5% versus 20.8%; P = 0.05), and
in recipients who did develop DGF, the 6-month graft sur-
vival rate was higher when kidneys were machine-perfused
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than cold-stored (87% versus 76%; P = 0.05). Further-
more, the 1-year graft survival rate improved from 90% in
the SCS group to 94% for HMP kidneys. As part of this
clinical trial, Treckmann et al. analyzed the possible effects
of MP versus cold storage on DGF and early graft survival
in expanded-criteria donors [24]. The technology and
utilization of HMP have increased exponentially with
time, and now 25% to 35% of all kidneys transplanted
in the United States are preserved by using HMP [25].
In addition, pre-transplantation viability tests of DCD grafts
are particularly important. Making a reliable assessment
of DCD grafts is difficult for several multifactorial reasons,
and performing liver biopsies is of limited value, even
in brain-dead potential donors. One advantage of MP
preservation is that viability tests can be performed on
grafts while they are stored. To this end, a clinical study
used trypan blue exclusion with collagenase digestion
of biopsy tissue to demonstrate hepatocyte viability in
DCD liver grafts for transplantation [26]. In addition,
HMP enables surgeons to judge the suitability of a graft
by assessing organ flow and pressure characteristics and by
analyzing various enzyme levels in the perfusate. Develop-
ing an MP system to support viability assessments of liver
grafts has been complicated by their unique blood supply.
Predicting viability by evaluating flow in the portal system
has been problematic because portal flow is wide-ranged
and early MP systems were unable to generate sufficient
portal pressure to yield adequate portal flow during the
hypothermic stage of preservation. Even tissue and vascular
resistance, which provide important information in kid-
ney preservation, are particularly low in liver due to easy
destruction. However, previous reports have shown that
the levels of aspartate aminotransferase (AST) and lactate
dehydrogenase (LDH) in circulating preservation solution
are useful and predictable biomarkers of liver graft health
[27-29]. In addition, Obara et al. recently developed a novel
liver MP system and found that the degree of decrease in
hepatic arterial pressure is significantly correlated with
the duration of warm ischemic injury and with the levels
of liver enzymes (AST, LDH) in cold perfusate during
continuous preservation [29].
Advantages and disadvantages of MP preservation are

summarized in Table 3.
Table 3 Advantages and disadvantages of machine
perfusion (MP) preservation

Advantages Disadvantages

Lower incidence of delayed graft function Higher cost in the short-term

Continuous monitoring of parameters Endothelial injury is possible

Decrease vasospasm Logistically more complex

Ability to provide metabolic support Possible equipment failure

Potential for pharmacologic manipulation
Current challenges in applying new machine preservation
methods to DCD liver grafts
Despite the example of the successful application of MP to
DCD kidney grafts, the application of HMP to DCD liver
transplantation has remained challenging. The optimal pa-
rameters for the use of HMP in DCD livers have not been
established. Ex vivo assessment of liver damage showed that
10 hours of HMP reduced the cellular damage induced due
to 30 minutes of DWIT [30]. Dutkowski and colleagues
studied the effect of short-term hypothermic oxygenated
perfusion (HOPE) at the end of cold storage and found that
1 hour of HMP after 45 minutes of DWIT and 5 hours of
SCS improved the status of rat liver grafts, with a reduction
in hepatocyte necrosis, less AST release, and increased bile
flow [31]. Various other studies have investigated the effects
of changing the perfusion temperature. For example, sub-
normothermic MP at 20°C decreased vasoconstriction and
metabolic requirements in DCD [32] and steatotic [33] rat
models. However, the limitations of basic transplantation
research using small animal models include difficulties in
the assessment of hepatic artery flow. These limitations are
important factors when weighing the clinical relevance of
small animal preservation studies. In large animal studies,
successful liver transplantation in a canine model was
achieved after 24 hours of MP [34]. The first 11 human
livers to be transplanted were perfused for as long as 7.5
hours by using the same method as in the previous canine
study [35]. However, the use of fresh diluted blood is in-
convenient in the clinical setting. Pienaar et al. reported
that canine livers could be preserved successfully for 72
hours by HMP via the portal vein alone [36]; no other
similar results in large animal transplantation models have
been published so far. Low pressure HMP was applied to
porcine livers via the hepatic artery for 2 hours before
transplantation; these HMP-treated grafts were then
compared with similar grafts that had been stored in
cold Euro-Collins solution for the same duration. LDH
and AST levels were consistently lower in the HMP
grafts compared with the SCS livers [37]. Guarrera and
coworkers demonstrated the outcomes of liver trans-
plantation in a miniature swine model after grafts had
been exposed to 12 hours of SCS compared with 12
hours of HMP using Vasosol solution, a modified Belzer’s
MP solution [38]. Serum AST and total bilirubin levels
were similar between the HMP and SCS livers, indicating
that HMP with a synthetic perfusate can be used success-
fully to preserve donor livers before transplantation. Ap-
plying this same solution and technology to human livers
achieved satisfactory transplantation outcomes compared
with those after SCS [39]. The MP preservation solution
Polysol was developed in 2005 and contains many vitamins
and a protein-like, enriched tissue culture medium for
functional recovery during preservation, which is expen-
sive [40,41]. Regarding DCD liver grafts in large animals,
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most groups had agreed that 30 minutes of DWIT plus 4
to 5 hours of cold preservation results in primary loss of
function in pig liver [42,43]. In response, de Rougemont
and colleagues tested whether HOPE-treated DCD pig
livers experienced the same benefits as those noted in
a previous report using a rat model [44]. The study showed
that DCD porcine liver with 60 minutes of DWIT and
preserved for 6 hours with SCS could be rescued by
short-term (1 hour) HOPE [44]. Specifically, HOPE-treated
pig livers had lower values of AST and LDH after reper-
fusion and a higher survival rate of up to 30 hours. Con-
sidering the potential benefit of temperature on liver
preservation, Monbaliu and colleagues designed a multifac-
torial biological modulation approach targeting ischemia-
reperfusion injury to augment the viability of porcine liver
grafts with 45 minutes of DWIT and 4 hours of SCS [45].
In the modulation group, DCD livers were flushed with
warm Ringer’s solution containing streptokinase and a
vasodilator prior to SCS; recipients received glycine, a mito-
gen activated protein (MAP) kinase inhibitor, α-tocopherol,
glutathione, and an iron chelator (apotransferrin) intraven-
ously. This approach was effective and eliminated primary
non-function, thus improving graft function [45].
In another temperature-associated strategy, we have

developed a temperature-controlled preservation machine
(Figure 1) and demonstrated beneficial functional recovery
Figure 1 Temperature-controlled preservation machine.
in a porcine liver transplantation model after 30 minutes
of DWIT plus 4 to 5 hours of total ischemic time in the
HMP group compared with the SCS-only group [46].
Furthermore, we successfully transplanted porcine livers
that had been exposed to 60 minutes of DWIT plus 4
hours of total ischemic time by rewarming them from
4°C to 22°C during preservation using MP [47]. The
traditional understanding and procedures regarding DCD
grafts tend to be changed. Experimental studies have
demonstrated that even brief periods of cold preservation
injures hepatocytes, Kupffer cells, and endothelial cells
in DCD livers, even in grafts that later are recirculated
under normothermia [48-50]. The use of normothermic
extracorporeal membrane oxygenated (NECMO) perfusion
is based on experimental studies, which have shown that
the recirculation of oxygenated blood at 37°C improves the
cellular energy load, reduces tissue injury, and improves
the post-transplantation graft function in livers damaged
during the warm ischemia caused by cardiac arrest [51,52].
In 2002, the Hospital Clinic, University of Barcelona,
Barcelona, Spain, developed a clinical protocol for resusci-
tating donor organs and maintaining their viability for
transplantation [53]. The protocol includes cannulation of
the donor’s femoral vessels to establish a NECMO circuit.
NECMO is then used to reperfuse and deoxygenate ab-
dominal organs after cardiac arrest while the potential
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Figure 2 Machine preservation systems used worldwide. The perfusion preservation machine in the UK is applicable for both cold and
normothermic conditions (left). The machine developed in the USA is for cold preservation (bottom).
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donor is evaluated and consent for organ donation is
obtained. In addition, using NECMO to maintain organs
offers the theoretical benefit of applying cytoprotective
substances that can support functional recovery.
During 2007, the first human liver transplantations

were performed with livers from uncontrolled DCDs
during which the donor was maintained with NECMO
prior to organ retrieval. Ten DCD livers were transplanted,
with only one graft lost to primary nonfunction and
another to hepatic artery thrombosis. The DCD experience
of the Barcelona group is continuing to increase with more
than 40 cases, which however need much more donor
cannulations for in situ NECMO [54]. A great advantage
of normothermic preservation is the ability to overcome
the deleterious aspects of hypothermic cellular physiology;
however, the logistics of clinical organ retrieval might
necessitate a period of cold preservation during transpor-
tation between institutions. In addition, the use of blood-
based perfusates may increase the risks of microvascular
failure, sinusoidal plugging, and bacterial growth [55].
Also, any equipment failure results in unexpected
warm ischemic injury. Achieving normothermic liver
preservation therefore remains challenging, but pro-
gress is being made: in March 2013, the BBC reported
two human livers maintained with warm perfusion were
successfully transplanted at King’s College Hospital,
London, UK. Figure 2 shows various MP systems that
are currently being used worldwide.
Conclusions
This historical review of DCD liver preservation for clinical
use has revealed that traditional methods of preservation
based on hypothermic static storage are likely suboptimal
for DCD liver grafts, because liver organs from DCDs have
already suffered severe tissue damage secondary to
hypoxia and hypoperfusion before the initial period of
warm ischemia. Additional damage to the organ due to
hypothermic conditions may limit the ability to restore
cellular function because metabolic activity is decreased at
low temperatures. However, at present it is unclear whether
DCD livers can be better rescued by normothermic or
hypothermic approaches. Ideally, DCD livers should be
perfused continuously with oxygenated perfusate during
the entire ex vivo phase of preservation. Moreover, preser-
vation schemes should be established to overcome severe
reperfusion injury, particularly ischemic cholangiopathy,
in DCD livers. Finally, we propose using the term ‘organ
regeneration’ to describe the ex vivo resuscitation of a
marginal donor organ.
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